
 

 
A Model for Deformation and Fragmentation in Crushable 

Brittle Solids 
 

by John D. Clayton 
 
 

ARL-RP-201 March 2008 
 
 
 
 
 
 
 
 
 
 

A reprint from the International Journal of Impact Engineering,  
vol. 35, pp. 269–289, 2008. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position unless 
so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the 
use thereof. 
 
Destroy this report when it is no longer needed.  Do not return it to the originator. 



 

 

Army Research Laboratory 
Aberdeen Proving Ground, MD  21005-5069 
 

ARL-RP-201 March 2008 
 
 
 
 
A Model for Deformation and Fragmentation in Crushable 

Brittle Solids 
 

John D. Clayton 
Weapons and Materials Research Directorate, ARL 

 
 
 
 
 
 
 
 
 
 

A reprint from the International Journal of Impact Engineering,  
vol. 35, pp. 269–289, 2008. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

March 2008 
2. REPORT TYPE 

Reprint 
3. DATES COVERED (From - To) 

October 2006–October 2007 
5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

4. TITLE AND SUBTITLE 

A Model for Deformation and Fragmentation in Crushable Brittle Solids 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

WHPR01E 
5e. TASK NUMBER 

 

6. AUTHOR(S) 

John D. Clayton 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN:  AMSRD-ARL-WM-TD 
Aberdeen Proving Ground, MD  21005-5069 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-RP-201 

10. SPONSOR/MONITOR'S ACRONYM(S) 

 
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

A reprint from the International Journal of Impact Engineering, vol. 35, pp. 269–289, 2008. 
14. ABSTRACT 

A unified framework of continuum elasticity, inelasticity, damage mechanics, and fragmentation in crushable solid materials is 
presented.  A free energy function accounts for thermodynamics of elastic deformation and damage, and thermodynamically 
admissible kinetic relations are given for inelastic rates (i.e., irreversible strain and damage evolution).  The model is further 
specialized to study concrete subjected to ballistic loading.  Numerical implementation proceeds within a finite element context 
in which standard continuum elements represent the intact solid and particle methods capture eroded material.  The impact of a 
metallic, spherical projectile upon a planar concrete target and the subsequent motion of the resulting cloud of concrete debris 
are simulated.  Favorable quantitative comparisons are made between the results of simulations and experiments regarding 
residual velocity of the penetrator, mass of destroyed material, and crater and hole sizes in the target.  The model qualitatively 
predicts aspects of the fragment cloud observed in high-speed photographs of the impact experiment, including features of the 
size and velocity distributions of the fragments.  Additionally, two distinct methods are evaluated for quantitatively 
characterizing the mass and velocity distributions of the debris field, with one method based upon a local energy balance and the 
second based upon global entropy maximization.  Finally, the model is used to predict distributions of fragment masses 
produced during impact crushing of a concrete sphere, with modest quantitative agreement observed between results of 
simulation and experiment.  
15. SUBJECT TERMS 

fragmentation, damage mechanics, thermodynamics, statistical physics, concrete 

16. SECURITY CLASSIFICATION OF:   
19a. NAME OF RESPONSIBLE PERSON 
John D. Clayton 

a. REPORT 
UNCLASSIFIED 

b. ABSTRACT 
UNCLASSIFIED 

c. THIS PAGE 
UNCLASSIFIED 

17. LIMITATION 
OF ABSTRACT 

 
UL 

18. NUMBER 
OF PAGES 

 
28 19b. TELEPHONE NUMBER (Include area code) 

410-306-0975 
 Standard Form 298 (Rev. 8/98) 
 Prescribed by ANSI Std. Z39.18



ARTICLE IN PRESS
0734-743X/$ - s

doi:10.1016/j.iji

�Tel.: +1 410

E-mail addr
International Journal of Impact Engineering 35 (2008) 269–289

www.elsevier.com/locate/ijimpeng
A model for deformation and fragmentation in crushable brittle solids

John D. Clayton�

US Army Research Laboratory, Impact Physics Branch, AMSRD-ARL-WM-TD, Aberdeen Proving Ground, MD 21005-5069, USA

Received 14 November 2006; received in revised form 9 February 2007; accepted 18 February 2007

Available online 12 March 2007
Abstract

A unified framework of continuum elasticity, inelasticity, damage mechanics, and fragmentation in crushable solid materials is

presented. A free energy function accounts for thermodynamics of elastic deformation and damage, and thermodynamically admissible

kinetic relations are given for inelastic rates (i.e., irreversible strain and damage evolution). The model is further specialized to study

concrete subjected to ballistic loading. Numerical implementation proceeds within a finite element context in which standard continuum

elements represent the intact solid and particle methods capture eroded material. The impact of a metallic, spherical projectile upon a

planar concrete target and the subsequent motion of the resulting cloud of concrete debris are simulated. Favorable quantitative

comparisons are made between the results of simulations and experiments regarding residual velocity of the penetrator, mass of

destroyed material, and crater and hole sizes in the target. The model qualitatively predicts aspects of the fragment cloud observed in

high-speed photographs of the impact experiment, including features of the size and velocity distributions of the fragments. Additionally,

two distinct methods are evaluated for quantitatively characterizing the mass and velocity distributions of the debris field, with one

method based upon a local energy balance and the second based upon global entropy maximization. Finally, the model is used to predict

distributions of fragment masses produced during impact crushing of a concrete sphere, with modest quantitative agreement observed

between results of simulation and experiment.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Fragmentation; Damage mechanics; Thermodynamics; Statistical physics; Concrete
1. Introduction

An understanding of dynamic deformation, damage
evolution, and fragmentation of solid materials is needed in
order to describe complex physical phenomena occurring,
for example, in solid body collisions and ballistic impacts.
In the context of wartime environments or terrorist attacks,
injuries to soldiers and bystanders due to flying concrete
debris as a result of violently explosive destruction of
buildings and other urban structures have been reported
[1]. Characterization of the debris field would enable
enhancement of current protective strategies, for example
improvements in body armor and guidelines on safe stand-
off distances from buildings undergoing detonation or
pulverization [2]. The defense industry also has a need to
more fully understand the material failure process so that
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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strategies may be improved to defeat fortified concrete
structures such as reinforced walls, bunkers, and road-
blocks. Finally, crushing processes for rubble obtained
from demolished urban structures (for recycling purposes)
drive the development of mathematical models enabling an
increased understanding of inelastic deformation, fracture,
and fragmentation of concrete-based materials [3–5].
The aim of the present study is development of a self-

consistent theory accounting for dynamic deformation,
damage, and fragmentation mechanisms, specifically amen-
able to brittle, crushable solids such as concrete, mortar,
and cinder block. This theory enables simulation and
analysis of urban structures undergoing ballistic or
explosive loading scenarios. These materials are referred
to here as ‘crushable’ since they nominally contain
significant initial porosity. For example, the microstructure
of concrete consists of a mixture of aggregate stones,
typically granite, quartz, or limestone, embedded in a
cement matrix. The matrix, alternatively referred to as

www.elsevier.com/locate/ijimpeng
dx.doi.org/10.1016/j.ijimpeng.2007.02.002
mailto:jclayton@arl.army.mil
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‘mortar’, consists of sand, water, ash, and various binding
agents. Porosities on the order of 10–20% in standardized
concretes used for urban construction are not uncommon
[6–8], and the pores may be air- or water-filled depending
on the preparation method and moisture of the ambient
environment. This initial porosity induces a pressure
dependency in the effective compressive bulk modulus,
with the stiffness of the material increasing as the pores are
compacted.

A voluminous literature exists describing mechanical
properties and constitutive modeling of concrete. A brief
survey of recent work deemed most relevant to the present
research is given here. Hanchak et al. [6] conducted
laboratory triaxial tests and coupled pressure-shear experi-
ments, in addition to ballistic perforation measurements.
Holmquist et al. [7] developed a constitutive model (HJC
model), with the pressure–volume response following data
from [6], and a plasticity and damage model reminiscent,
yet not identical, to those used previously for metallic
materials [9], with failure criteria based on cumulative
strain measures [10]. Grote et al. [11] used uniaxial stress
tests, split Hopkinson bar tests, and plate impact tests to
measure the rate-dependent compressive flow strength of
concrete and mortar at low, intermediate, and high strain
rates, respectively. Properties were subsequently used in
dynamic finite element simulations of plate impact of the
dual-phase concrete [12], in which microstructures were
resolved explicitly, with an extended Drucker–Prager
plasticity theory used to capture pressure-dependent yield.
Bažant et al. [13] developed a model for concrete in which
plastic slip may occur on a number of microplanes,
somewhat analogous to the slip planes of crystal plasticity
theory [14]. This model has been applied to address a
number of features of concrete behavior arising in impact
events, including high deformation rates [15] and finite
strains [16]. Other bounding surface-based models addres-
sing yielding or damage under a variety of static and cyclic
stress state histories have been formulated [17,18]. The
variability in mechanical properties such as flow stress and
fracture toughness with microstructure constituents [19],
processing conditions (e.g., environment and geographic
location), and age of the material presents an inherent
difficulty in precisely modeling the mechanical behavior of
this class of urban structural materials.

The theoretical framework for the behavior of crushable
solids formulated here differs from many existing concrete
constitutive models in its usage of a multiplicative split of
the deformation gradient into elastic and inelastic compo-
nents [20] and its emphasized adherence to the laws of
continuum mechanics and thermodynamics, including the
entropy production inequality (i.e., second law of thermo-
dynamics). This is not meant to imply that existing
engineering models developed elsewhere for concrete
material behavior do not satisfy thermodynamic principles,
merely that such principles are often not considered
explicitly in the process of model development and
parameter selection. In the present work, thermodynami-
cally consistent properties and evolution equations for
porosity and damage are formulated following the general
procedures of [21,22]. This approach, with multiplicative
finite deformation kinematics and simultaneous adherence
to energy conservation and entropy production, has been
used frequently for metal plasticity [23,24]. However, its
use in urban structural materials such as concrete has not
heretofore been emphasized in the literature, though some
analogous thermodynamic aspects have been incorporated
for modeling geological materials [25]. The present model
also invokes the concept of an internal state variable
representing damage in the material, related to the
normalized density of micro-cracks in the substance.
Similar approaches, albeit with various different ways of
relating continuum damage variables to microscopic
damage entities or flaws, have been used for some time in
continuum damage mechanics theories [26–30]. Mathema-
tically consistent constitutive models for elastic and
inelastic deformation mechanisms, including phase
changes, in moderately porous solids have also been
developed elsewhere [31,32].
In the numerical implementation of the model developed

here, elastic strains are assumed to remain small in order to
permit computational efficiency in an explicit integration
scheme, as is common in hydrocodes used to simulate finite
plastic deformation of metals [33]. While some consistency
with the theoretical formulation is lost in this approach, as
opposed to a more costly, yet more rigorous implicit
formulation for finite elasticity [34], possible limitations in
accuracy due to elastic nonlinearity are thought to be more
apparent here than would be the case if small elastic
deformations were assumed from the outset in both theory
and implementation.
A variety of numerical approaches have been undertaken

to numerically simulate ballistic impact and fragmentation.
Conventional finite element methods have been used for
decades to model penetration, including concrete targets
[7,16]. Often, elements are deleted or eroded when some
failure criteria or maximum cumulative strain is achieved.
Fragmentation has been addressed in this context via post-
processing calculations [35,36]. More recently, cohesive
finite elements have been used to simulate dynamic
fragmentation [37,38]. This technique is naturally more
realistic than element deletion for modeling discrete cracks,
and is thought to be particularly useful for simulations of
microstructure-level fracture along grain boundaries and
other internal interfaces, for example, where cohesive
elements can be inserted along weak links in the micro-
structure [24,39]. The discrete element method, whereby
material elements are connected by spring-like entities, has
been used to simulate dynamic deformation and fracture of
concrete [40]. Eulerian representations of material behavior
have also been implemented to characterize fragment
debris subsequent to ballistic impact [41,42]. Such ap-
proaches offer advantages with regards to addressing fluid-
like flow of material at high pressures. Particle methods
have also been used to address fracture and fragmentation.
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Silling and Askari [43] implemented a theory in which the
governing equations are cast in integral form. Smooth
particle hydrodynamics (SPH) methods [44,45] permit
simulations of very large distortions in ballistic impact in
a Lagrangian setting, with local continuum-type quantities
such as deformation rates depending upon relative particle
motions and smoothing functions. Concrete subjected to
explosive loading has been modeled with SPH [45]. The
approach followed here is that of Johnson et al. [46,47], in
which continuum finite elements are converted to meshless
particles when specified erosion criteria are met. To this
end, the generalized particle algorithm (GPA) of the EPIC
2003 code is used; GPA differs from SPH regarding the
choice of smoothing functions [46]. This method is
computationally efficient and appears natural for modeling
fragmentation, as the particle velocities and trajectories can
be directly associated with those of the fragments of
comminuted material. However, information regarding
sizes of individual fragments is not readily available from
standard SPH or GPA methods, since the mass of each
particle is simply the nodal mass, which in turn depends
upon the discretization. For example, a uniform grid would
produce a uniform size/mass distribution of particles. This
issue is addressed here by incorporating additional physics
into the constitutive framework permitting calculation of
non-uniform fragment mass distributions.

A number of analytical methods have been developed to
quantitatively characterize fragmentation. Grady [48]
suggested that the total energy of a fragmenting body
consists of expansion kinetic energy and the surface or
fracture energy, the latter an intrinsic material property.
Energy minimization under variations of fragment dimen-
sion then yield the nominal fragment size for spherical
expansion of a fluid or brittle tensile fracture of a solid. A
more extensive treatment was later given in [49]. Grady’s
approach was extended by Glenn and Chudnovsky [50] to
include stored elastic energy and then Johnson and Cook
[35] to account for 3D stress states, though in these latter
approaches a direct energy balance was used, as opposed to
energy minimization. In a finite element implementation,
Johnson and Cook [35] computed a cumulative fragment
size based on the strain and strain-rate history in the
material, though the fragmentation process was perhaps
unrealistically assumed to commence in each element from
the outset of local deformation, and the fragmentation
energy consumed did not enter the constitutive model for
the bulk material behavior. Miller et al. [51] demonstrated
the history dependence of fragment size using a numerical
approach with cohesive fracture and developed an analy-
tical model of fragmentation for a body with a time-
dependent stress history. Analytical models have also been
developed to characterize statistical distributions of frag-
ment sizes. These include methods based on random
disintegration of bodies in one or more dimensions leading
to Poisson-type statistics, as well as geometry-based
approaches partitioning areas or volumes in various ways
[52,53]. Entropy maximization principles, by which the
most chaotic distributions are deemed most probable, have
also been used to construct fragment statistics [53]
including methods accounting for elastic energy and
damage [54] and rotational inertia thought important for
granular microstructures [55]. Continuum micromechanics-
based models in which crack sizes are related to typical
fragment sizes in dynamically fracturing brittle materials
have also been developed [56].
Previous efforts toward modeling ballistic fragmentation

with Lagrangian or Eulerian hydrocodes have often
focused on metallic targets [35,41,42]. Implementations
for modeling fragmentation characteristics of concrete or
geological materials have also been reported [2,36]. In the
present work, two alternative methods are considered for
computing fragment size and velocity statistics, both
compatible with the laws of thermodynamics and momen-
tum conservation. The first relies on a local energy balance
similar to that of [35,48–50], but newly applied to crushable
solids in a method consistent with the description of energy
in the bulk constitutive model. Fracture energy is explicitly
accounted for in the constitutive model, via evolution of an
internal variable representing damage in the substance, and
fuels the fragmentation process when damage reaches a
critical level. In this way, energy consumed in fragmenta-
tion is not a static intrinsic property, but depends on the
damage progression in the material. The distribution of
mass of the fragments is then computed by application of
the energy balance to converted particles in the simulation,
with the velocity distribution of the fragments associated
with that of the particles. In the second approach, a
method based on entropy maximization and classical
statistical physics is applied, following [53,57]. A joint
probability distribution function for fragment mass and
velocity is derived consistent with energy and momentum
conservation, with the global kinetic energy and trajectory
of the fragment cloud computed from the mass-weighted
average velocity of the ensemble of converted particles.
The remainder of this paper is organized as follows. The

continuum theory is presented, consisting of kinematics,
thermodynamics, and kinetic relations. Then fragmenta-
tion modeling is discussed, including methods based on a
local energy balance or global statistical physics. Features
that differentiate the present theory from others in the
literature are embedded in these descriptions. Model
parameters for a particular mix of concrete are given,
and the implementation in a finite element setting with
particle dynamics is then described. The model is first used
to simulate high-speed perforation of a concrete target by a
tungsten sphere. Numerical results are interpreted and
compared with experimental quantities and observations
from high-speed photography [58]. A second simulation is
also performed, whereby a concrete sphere is impacted
against a fixed plate at a moderate velocity; resultant
fragment masses are computed using the local energetic
theory and compared with experimental data from [3].
The following notation is invoked. Cartesian coordinates

are applied throughout, with summation implied over
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repeated indices. Vector and tensor quantities are repre-
sented with boldface type, while scalars and individual
components of tensors are written in italics. Juxtaposition
implies summation over two repeated adjacent indices (e.g.,
ðABÞab ¼ AacBcb). The scalar product of vectors is repre-
sented by the symbol ‘d’ (e.g., adb ¼ aaba). The colon
denotes contraction over repeated pairs of indices (e.g.,
A : B ¼ trðATBÞ ¼ AabBab, where ‘tr’ is the trace operation,
and C : A ¼ CabcdAcd). Superposed �1, T, and ‘d’ denote
inverse, transpose, and material time derivative, respectively.
Additional notation is defined as it appears in the text.

2. Continuum modeling

Aspects of the model framework for describing deform-
ing and fragmenting crushable solids are presented here.
The kinematic framework is general in the sense that it is
intended for applications involving any solid material
exhibiting similar deformation mechanisms.

The kinematic description begins with a multiplicative
decomposition of the deformation gradient F:

F ¼ qx=qX ¼ FEFD, (1)

where x and X denote spatial and reference coordinates in
3D Euclidean space, FE is the recoverable elastic deforma-
tion, and FD is the irreversible deformation associated with
defects such as micro-cracks, voids, dislocations, or shear
discontinuities evolving within the material. The spatial
velocity gradient then follows directly from (1) as

L ¼ q _x=qx ¼ _F
E
FE�1|fflfflfflffl{zfflfflfflffl}
LE

þFE _F
D
FD�1FE�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
LD

. (2)

The irreversible volumetric deformation associated with
pore collapse in crushable materials is described by

j ¼ JD�1 � 1; JD ¼ det FD, (3)

where j is the volume reduction upon crushing, a positive
quantity when the volume is reduced. Inelastic volumetric
expansion would be captured by jo0; however, such an
effect is not considered explicitly in the specific material
model that follows, since any inelastic tensile volumetric
deformations are assumed here to remain infinitesimal and
negligible for brittle solids undergoing dynamic fracture.
The inelastic velocity gradient from (2) can be written as

LD ¼ FE _F
D
FD�1FE�1 ¼ L̂

D
�

1

3
_jð1þ jÞ�11, (4)

where L̂
D
is the deviatoric inelastic velocity gradient mapped

to the spatial frame and 1 is the identity map. The elastic
strain tensor and scalar measure of volumetric elastic strain
in the intermediate configuration are defined as

2EE ¼ FETFE � 1; WE ¼ trEE. (5)

Standard local balances of mass, linear and angular
momentum apply:

r0 ¼ rJ ¼ r det F; divrþ f ¼ r €x; r ¼ rT, (6)
where f is the body force vector per unit spatial volume, r is
the Cauchy stress, and div denotes divergence in the spatial
frame. The spatial energy balance is written in localized
form as

r_e ¼ r : L� div q (7)

with e the internal energy per unit mass and q the heat flux
vector. The second law of thermodynamics is stated as

r : L� y�1qdqxyXrð _cþ _yZÞ, (8)

where y is the temperature, Z is the entropy per unit mass,
and the Helmholtz free energy is c ¼ e� yZ. The spatial
gradient operator is written as qx.
The Helmholtz free energy, on a per unit mass basis,

is assumed to exhibit the following general functional
dependency:

c ¼ cðEE;j; y;DÞ, (9)

where D is a scalar internal state variable representing
cumulative damage in the material typically occurring in
conjunction with inelastic deformation. Stress-strain and
temperature-entropy relations are then deduced as [21,22]

r ¼ FEr
qc
qEE

FET; Z ¼ �
qc
qy

. (10)

The dissipation inequality (8) becomes

r : L̂
D
þ

p

1þ j
� r

qc
qj

� �
_j� r

qc
qD

_DXy�1qdqxy, (11)

where the Cauchy pressure 3p ¼ �trr. Assuming isotropic
heat conduction in the spatial frame,

q ¼ �kqxy, (12)

with k the scalar thermal conductivity, and defining the
specific heat parameter ĉ ¼ qe=qy ¼ �yq2c=qy2, the energy
balance can be written in terms of temperature rise _y as

rĉ_y ¼ r : LD � r
qc
qj
� y

q2c
qyqj

� �
_j�

qc
qD
� y

q2c
qyqD

� ��
_D

�y
qc

qyqEE
: _E

E

�
þ divðkqxyÞ: ð13Þ

The framework is now specialized to brittle crushable
solids such as concrete and mortar, with deformations
comprising FD associated with micro-crack opening and
sliding, as well as pore collapse during compression.
Specifically, in concrete materials, deviatoric deformation
(represented here in rate form by L̂

D
) consists of micro-

cracking, frictional crack sliding, rubble formation, and
eventual granular flow [12,15,59]. Such irreversible defor-
mation modes typically initiate at weak links in the
microstructure such as aggregate–mortar interfaces, but
may also occur alongside mortar fissures and aggregate
cracking at large deformations [4,19]. Let o represent
the cumulative local micro-cracked area per unit inter-
mediate volume, such that D ¼ o=oc, where oc is a
material parameter denoting the maximum sustainable
crack density, subject to the restriction 0pDp1. This is
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a modeling assumption unique to the present theory,
providing a simple linear relationship between crack
density, a micromechanical quantity, and damage D, a
macroscopic continuum quantity. When the material is
undamaged, the crack density is assumed negligible
ðo ¼ 0Þ, while the crack density achieves its maximum
value ðo ¼ ocÞ when catastrophic failure of the material
element occurs, e.g., micro-crack percolation. Perhaps
most ideally, the property oc could be determined from
microscopic investigations, including data obtained from
micromechanical experiments and/or computations, of
concrete microstructures undergoing dynamic fracture
and fragmentation. However, such microscopic data are
presently unavailable for the material of study in the
simulations that follow. Instead, oc is chosen for concrete
following the experimental observation that typical frag-
ments are of a size commensurate with that of the
aggregate, as discussed in detail later in Section 4. Such
an approach, with micromechanically inspired constants
determined from macroscopic data, is common in practice
[29]. Though the model presented here suffices for the
present investigation, more realistic relationships between
damage and microstructure could be envisioned, at the
expense of additional experiments needed to determine any
added parameters.

The specific free energy density is postulated on a per
unit intermediate configuration volume basis as

~rc ¼ KðWE;jÞW
2
E þ Gð1�DÞÊ

E
: Ê

E

þ GðDÞ þ Y ðyÞ, ð14Þ

where the intermediate mass density ~r ¼ rJE, K is the
effective bulk modulus, G is the shear modulus of the
undamaged material, Ê

E
¼ EE � ðWE=3Þ1 is the elastic

strain deviator, G accounts for surface and concentrated
elastic energy in the vicinity of micro-cracks, and Y

describes the specific heat content. The bulk modulus takes
the particular form

K ¼ KEðjL � jÞ=ð2jLÞ

þ ðK1=2þ K2WE=3þ K3W
2
E=4Þðj=jLÞ, ð15Þ

where KE is the elastic bulk modulus of the initially porous
material, the parameter jL denotes the maximum porosity
reduction due to compressive pressure loading, and K1, K2,
and K3 determine the pressure–volume relationship for
fully dense material at j ¼ jL. The micro-crack energy per
unit intermediate volume is written as

�G ¼ go ¼ ðK2
CoCDÞ=ð2KEÞ, (16)

where g ¼ K2
C=2KE is the surface energy of fracture [49],

with KC the effective fracture toughness. The negative sign
denotes internal energy release (positive dissipation) upon
fracture. As will be discussed later, the stored micro-elastic
energy released in (16) is assumed to contribute to the
continuum energy balance (13) only until fragmentation
commences, following which the energy dissipated is
converted to local kinetic energy of fragment expansion.
The intermediate second Piola–Kirchhoff stress is
defined by

S ¼ ~r
qc
qEE
¼ JEFE�1rFE�T. (17)

From (14) and (15), hydrostatic and deviatoric parts of S
are then found as

~p ¼ � trS=3

¼ � KEWEðjL � jÞ=jL � ðK1WE þ K2W
2
E

þ K3W
3
EÞj=jL, ð18Þ

Ŝ ¼ Sþ ~p1 ¼ 2ð1�DÞGÊ
E
. (19)

The Cauchy pressure is �3p ¼ trr ¼ trðJE�1FESFETÞ.
Deviatoric plastic deformation follows from the flow

potential F, which is equated here with the effective
deviatoric stress s̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3
2
Þr̂ : r̂

q
:

L̂
D
¼ l

qF
qr̂

,

F ¼ ½Āð1�DÞ þ B̄ðp=s0Þ
N̄
�

� ½1þ C̄ lnð_̂�=_�0Þ�s0 ðp=s04� T̄Þ, ð20Þ

where 3l2 ¼ 2L̂
D
: L̂

D
for stresses exceeding the elastic

limit, r̂ is the deviatoric stress, _̂� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2
3
ÞD̂ : D̂

q
(with D̂ the

symmetric deviatoric part of L), and Ā, B̄, C̄, N̄, _�0, and s0
are material parameters. T̄ is equivalent to the ratio �p̄=s0,
with p̄ the tensile pressure at failure. Note that the
flow potential used in (20) is identical to that of the HJC
model [7].
In the present implementation, an isotropic inelastic

response is assumed such that the inelastic spin may be
neglected, as indicated by LD ¼ LDT. Furthermore, note
that LD � _F

D
FD�1 when elastic shape changes are small, an

assumption made later in the numerical implementation to
facilitate solution of large problems. The null plastic spin
assumption is standard for isotropic materials [60]. With
this assumption, the flow rule in the first of (20), written in
terms of the effective deviatoric stress, is of a form
consistent with the historic plasticity literature [61].
Porosity and damage evolution are controlled via the

kinetic relations

_j ¼
0 ðpppC; pXpLÞ;

âh _pi=s0 ðpCopopLÞ;

(

_D ¼ k̂lh1� pDðp=s0Þi þ T̄
�1
h� _p=s0i, ð21Þ

where â, k̂, and pD are positive constants, and the bracket
notation 2hxi ¼ xþ jxj. The pressure at which inelastic
crushing commences is denoted by pC, and the locking
pressure corresponding to jL is denoted as pL. Notice
from (21) that both _j and _D are always positive, i.e.,
irreversible. Note that although the particular forms of
Eqs. (21) may be new, these are differential equations of a
rate form typically encountered in internal state variable
theories [33].
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The physical interpretation and motivation for (21) is as
follows. At compressive pressures lower than pC, volu-
metric deformation is assumed elastic and pore collapse
does not occur. On the other hand, when pressures exceed
pL, all pores have been compressed and the material is fully
dense. Finally, at pressures between crushing ðpCÞ and
locking ðpLÞ, a linear relationship is implied between
changes in pressure and pore compaction. Damage in the
form of micro-cracking evolves in conjunction with

inelastic deformation l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2
3
ÞL̂

D
: L̂

D
q

, since inelastic de-

formation is assumed to consist of matrix–aggregate
separation and micro-crack sliding. Increases in tensile
pressure ðpo0Þ further exacerbate the initiation and
growth of cracks in the microstructure [59]. It is noted
that (21) has been developed for describing dynamic failure
events, such as spall and fragmentation upon ballistic
impact, and may not reproduce details of rubble formation
and localized deformation modes such as cone and shear
failures occurring during static unconfined compression [4],
for example.

The model is next evaluated in terms of thermodynamic
admissibility. From (14)–(16),

�r
qc
qD
¼ JE�1 GÊ

E
: Ê

E
þ

K2
CoC

2KE

� �
, (22)

�r
qc
qj
¼ JE�1½r0cþ KEW

2
E=ð2jLÞ � ðK1=2

þ K2WE=3þ K3W
2
E=4ÞðW

2
E=jLÞ�. ð23Þ

Returning to (11), now consider the strong form of the
second law:

r : L̂
D
� r

qc
qD

_Dþ
p

1þ j
� r

qc
qj

� �
_jX0,

� qdqxyX0. ð24Þ

Using (20) and (21),

r̂ : L̂
D
¼ lr̂ :

qF
qr̂
¼

l
2s̄

r̂ : r̂X0, (25)

�JEr
qc
qD

_D ¼
ðjL � jÞ

2jL

KEW
2
E þ GÊ

E
: Ê

E
þ

K2
CoC

2KE

� �
� ½k̂lh1� pDðp=s0Þi þ T̄

�1
h _p=s0i�X0, ð26Þ

meaning that the kinetic relations for plastic flow (20) and
damage evolution (21) are consistent with the laws of
thermodynamics in (7), (8), and (24). Note also that a
different flow potential F could be used in (20) should a
more complex yield surface be necessary, for example
capturing anisotropy, creep, or cyclic loading [15–18]. The
energy dissipated in (25) corresponds physically to
irreversible processes associated with micro-crack sliding
and frictional granular flow mechanisms, contributing
mainly to temperature rise in (13) under near-adiabatic
conditions. So long as (25) is satisfied, thermodynamic
admissibility of the plasticity component of the model
framework is maintained. For evolution of porosity, the
following constraint emerges in terms of the pressure,
considering (23), as _jX0 from the first of (21):

pX
ð1þ jLÞ

JEjL

ðK1=2þ K2WE=3þ K3W
2
E=4ÞW

2
E ¼ L. (27)

Subsequently, material parameters are selected such that
(27) is satisfied over the range of applicability of the model.
Similarities between the present approach and existing

models are clarified in the discussion that follows. Some
features of the model developed here are shared with HJC
model of [7]. As will be demonstrated later, the EPIC (2003
version) computational platform was used for the large
scale simulations, and the built-in HJC model of that code
was used as a guide for developing some aspects of the
present constitutive model. To this end, the authors of
[7,62] are commended for providing clear documentation
and references used in the determination of material
constants of the very same composition of concrete
(SAC-7) of interest in the simulations that follow in the
present study. Likewise the software developers are
acknowledged for supplying an efficient, manageable, and
portable code that provided robust algorithms for element-
to-particle conversion [46,47] essential for capturing frag-
ment debris in the simulations to be discussed later.
Specifically, here the same plastic flow potential in (20),
and corresponding plasticity parameters (see later Table 1)
are used verbatim from [7]. However, the porosity equation
is written in rate form (21) as opposed to a monotonic
algebraic relationship between pressure and specific volume
used in [7]. Furthermore, the damage evolution equation is
written in rate form in (21), as opposed to the incremental
form based on cumulative plastic and volumetric strain
increments used in [7]. Rate forms were used here to satisfy
the thermodynamics of (13) and (24), which are not
transparently compatible with kinetic equations based on
cumulative strain increments. It is noted that the experi-
mental data given in [7] and references therein [6,63,64]
were used to develop these relationships and select
parameters, as will be discussed in more detail in Section
4. For this reason, stress–strain behaviors predicted by the
present theory and the HJC model are similar for uniaxial
stress states, especially prior to the accumulation of
significant damage. However, it is noted in [7] that the
constants for plasticity and damage evolution may not
have been determined uniquely in the HJC model due to
lack of experimental data over a complete range of
pressures and strain rates; the same limitations apply here.
For this reason, and for the different forms of the evolution
equations (20), the failure behavior predicted by the
present theory and that of [7] will be different for
arbitrarily general stress histories.
Other differences between the present constitutive model

and that of [7] are now listed. The HJC model relies on an
additive split of the velocity gradient into elastic and
inelastic parts, as opposed to the multiplicative kinematics
of (1). Further, in the HJC engineering model, no strain
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Table 1

Model parameters for SAC-7 (48MPa) concrete

Constant Value Description

r0 2440kg/m3 Reference mass densitya

k 1.76W/(mK) Thermal conductivitya

ĉ 654 J/(kgK) Specific heat capacitya

KE 15.9GPa Initial elastic bulk modulusa

K1 85.0GPa Compressed first order bulk modulus

K2 �151GPa Compressed second order bulk modulus

K3 208GPa Compressed third order bulk modulus

K̂2 �171GPa Modified second order bulk modulusa ðpbpLÞ

G 14.9GPa Shear modulusa

jL 0.10 Maximum porosity reductiona

pC 0.016 Threshold pressure for irreversible crushinga

pL 0.080GPa Pressure at maximum porosity reductiona

Ā 0.79 HJC strength parametera

B̄ 1.60 HJC pressure parametera

C̄ 0.007 HJC strain rate parametera

N̄ 0.61 HJC pressure exponenta

_�0 1.0/s Reference strain ratea

s0 0.048GPa Static compressive yield strengtha

T̄ 0.083 Maximum allowable tensile pressurea

KC 0.831MPam1/2 Fracture toughness

oC 1.7(105)m�1 Maximum crack density ðo at D ¼ 1Þ

â 0.00614 Porosity evolution parameter

k̂ 300 Damage evolution parameter

pD 4.00 Damage evolution parameter

DT 0.50 Threshold damage for fragmentation initiation

aDenotes parameter obtained or derived from Ref. [7].
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energy function is given from which the elastic moduli are
derived. Instead, piecewise linear and nonlinear relations
are given for the bulk modulus, fit to the data of [6].
Modifications to the shear modulus upon damage accu-
mulation or porosity compaction are not discussed in the
original paper [7]. On the other hand, here a free energy
function is postulated explicitly in (14), from which the
elasticity relations are derived naturally in (10), (15), and
(17)–(19). Here, the Green elastic strain (5) is used in the
free energy (9) as an independent constitutive variable,
consistent with other accepted theories of finite deforma-
tion thermo-mechanics [23,24,34].

The shear modulus is reduced linearly with increasing
damage D in (14) and (19), inspired from simple damage
mechanics-based arguments relating effective moduli with
micro-crack densities [26–28]. In the HJC theory [7], no
connection between D and micro-cracks is made. However
the assumption made here, relating D to micro-crack
density, is not necessarily inconsistent with the yield surface
(20) formulated in [7]. Furthermore, the prescription of
linearly decreasing deviatoric inelastic strength in (20) with
increasing D is consistent with the analogous reduction in
shear modulus with increasing D in the present theory.

Also, in (15) the effective bulk modulus is interpolated
linearly between elastic ðKEÞ value at null compression
and the cubic Hugoniot curve at full compaction. In the
present framework, the bulk modulus is not reduced upon
accumulation of damage D, but such an effect could be
incorporated to reflect damage-induced losses in volu-
metric elastic stiffness under tensile stress states. It is noted
that similar pressure–volume responses are predicted
between the present theory and the HJC model [7] for a
particular composition of concrete, since both are fitted to
the same triaxial compression data [6].
A fundamental difference of the present theory with

many others [7,12,15–18] is the present model’s explicit
tracking of internal energy changes due to evolution of
damage D in the constitutive theory. The fracture energy G
in (14) and (16) accounts for the local elastic energy
released by breaking bonds during micro-crack initiation
and extension. This energy is distinct from that dissipated
during plastic deformation in (25), e.g., crack sliding and
granular flow contributing to frictional heating. However,
both dissipative mechanisms tend to occur simultaneously,
as damage growth is driven by plastic flow via (21), except
for cases wherein the compressive pressure provides
enough confinement to suppress increases in D in the
constitutive model. As will be discussed later in Section 3,
this fracture energy provides a counterbalance to the
expansion kinetic energy that drives the fragmentation
process (under the same deformation conditions, the
greater the fracture energy, the fewer fragments produced
per unit mass). Such an effect, whereby the energy
dissipated due to damage evolution in the bulk constitutive
model is explicitly transferred to fuel the formation of
fragment debris, has not been emphasized elsewhere. In
particular, the HJC model [7] does not at present
incorporate any means for computing fragment sizes,
though some post-processing capabilities exist in the EPIC
code for metals [35]. Also, no connection between D and
crack energy is made in the HJC model [7].
Tangible benefits arise from formulating a finite defor-

mation constitutive theory that explicitly accounts for
restrictions imposed by the laws of thermodynamics, as
opposed to a purely mechanical model that may appear
more simple and tractable for general engineering practice.
When selecting parameters and constitutive equations,
non-physical behavior can be avoided if thermodynamic
restrictions on dissipation are addressed [65]. Irreversible
processes such as damage accumulation, internal friction,
and inelastic deformation should cause energy dissipation,
as opposed to energy storage, in the material [16]. Incorrect
estimates of energy dissipation could lead to inaccurate
temperature predictions in high rate simulations of
material behavior, when conditions may be nearly adia-
batic. Effects of temperature on the mechanical response
will be greatest if the elastic constants, pressure, and/or
flow stress depend explicitly on temperature. They do not
here, but such temperature effects could be incorporated
later into the present theory when data become available,
and such effects are thought to be important for crushable
materials subjected to shock loading [32].
The value of the present general theory may be more

fully realized as it is extended to other materials. For
example, finite deformation elasticity may be even more
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useful for describing those materials, such as crystalline
ceramics, that undergo little plasticity or inelastic volume
change under shock loading. The connection of damage
variable D to micro-crack density provides an opportunity
for computational and experimental micromechanics
[28,56] to provide a physical basis for damage evolution
equations and parameters.

While the theory appears complex, it is emphasized that
the inequalities entering the thermodynamic analysis in
(24)–(27) need not be consulted once the kinetic equations
and corresponding parameters have been chosen for a
particular material. It is also noted that the number of
parameters in the present theory is not excessive, with only a
few more needed here than in [7] for example, specifically in
order to address fracture energy and fragmentation.
Furthermore, in the large scale computations to be discussed
later, much of the execution time is apparently consumed by
particle neighbor search algorithms, as opposed to the
constitutive update of the material response.

3. Fragmentation modeling

Two methods for describing fragment size and velocity
statistics are developed here. The first method, termed the
‘energetic approach’, relies on a local energy balance to
compute the fragment size and number of fragment(s)
associated with each local volume element (e.g., a finite
element, computational cell, or particle in a numerical
scheme), and assigns to all fragment(s) the local velocity of
that volume element. The second method, termed the
‘statistical physics approach’, is derived upon maximiza-
tion of a global statistical entropy function subject to
constraints regarding conservation of mass, energy, and
momentum.

3.1. Energetic approach

Fragmentation of the local volume element is assumed to
occur over a (small) time period, beginning when the
damage reaches a threshold value, D ¼ DT. Over this
period, the energy released per unit volume due to internal
micro-cracking is estimated, from (16), as

reD ¼

Z D

DT

½K2
CoC=ð2KEÞ�dD

¼ K2
CoCðD�DTÞ=ð2KEÞ. ð28Þ

During the fragmentation process, the material is assumed
to retain all energy apart from eD, which may be stored via
(14) or dissipated as heat. Prior to fragmentation, G
contributes to the dissipation and possible temperature rise
via (13) and (26); then, upon D ¼ DT, this energy
contributes to the relative kinetic energy of fragments.
Instantaneous energy transfer from fracture to fragmenta-
tion follows from

M _eD ¼Mr�1 _GjDXDT
¼ d

X
ðul þ usÞ=dt, (29)
where M is the total mass of the volume element, and ul

and us denote absolute energies due to the relative linear
and spin momenta per fragment. Note that these energies
are distinct from the kinetic energy of translation and
rotation of the center of mass of the element, which are
assumed to be conserved during the fragmentation process.
Summation in (29) is implied over all fragments comprising
the particular volume element under consideration.
Assuming cube-shaped fragments with edge length b,

energies can be estimated as

ul ¼ b5r_�2=16; us ¼ b5r _f
2
=12, (30)

where the effective strain rate in the fragment is
_� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D : D
p

, with D the symmetric part of L, and _f is the
rate of rotation of the fragment about its moment of
inertia. The velocity gradient L is assumed to be distributed
uniformly over the fragment population comprising the
continuum volume element, equivalent to the global value
assigned to that element [35]. Combining (29) and (30),X

rb3
� 	

_eD ¼
d

dt

X
ðb5r_�2=16þ b5r _f

2
=12Þ. (31)

Assuming that the mass density is equal and constant
among N fragments, replacing b with a mean effective
length b̄

3
¼ ðrNÞ�1M, and integrating with respect to time,

(31) becomes

b̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8K2

CoCðD�DTÞ

KErð_�Þ
2

s
, (32)

where the rotation _f has been omitted in (32), as the
translational energy is assumed here to far exceed the
rotational energy of the fragments, and since rotation rates
of fragments are difficult to quantify from experimental
observations [58] modeled later. Equation (32) yields the
mean fragment dimension b̄. Mass conservation then
provides the local number of fragments N ¼M=ðrb̄

3
Þ.

Note that (32) is a time-integrated generalization of the
energy rate balance (31); as a result, the mean fragment
dimension is inversely proportional to the strain rate in
(32), and not the second time derivative of strain.
Equation (32) may be written in the alternative form

b̄ ¼ Â½K2
C=ðKEr_�2Þ�N̂ , (33)

where Â ¼ 2:83
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oCðD�DTÞ

p
and N̂ ¼ 1

2
. This can be

compared with the brittle fragmentation model of Grady
[48], in which Â ¼ 2:71 and N̂ ¼ 1

3
, and the ductile failure

model of Johnson and Cook [35], which exhibits the form
of (33) with the substitutions Â ¼ 4, N̂ ¼ 1

2
, and

K2
C ¼ KEs̄�. All models predict a decrease in mean

fragment dimension with increasing strain rate, in agree-
ment with general observations on dynamically fragment-
ing solids [49]. Decreasing fragment sizes with increasing
strain rate have been predicted elsewhere specifically for
concrete and mortar [66].
Note that the derivation of (32) follows from the

assumption that the expansion kinetic energy of the
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fragments balances the fracture energy of the material;
similar assumptions have been made elsewhere with minor
variations, most notably [35,48–51]. The theory leads to the
logical conclusion that the more rapidly a mass of material
is straining or deforming, the more fragments it will
produce. The use of effective strain rates generalizes
derivations based on spherical expansion or 1D failure
[48–50]. The angular rotation rate of the fragments is
neglected in the applications that follow in the present
work, though such rotations could logically derive from the
spin of the continuum material. For example, analogously
to the definition of _�, one may assume that _f ¼ je :Wj,
where W is the skew part of L, and e is the rank 3
permutation tensor.

The new contribution here is introduction of parameters
DT and oC into the fragment size expression (32). The
former introduces history effects in a simple manner: only
the strain rate _� that occurs during the fragmentation
process, when D4DT, is used in the computation of the
fragment size, as is discussed in more detail in Section 4.
This prevents fragments from forming during processes in
which the material undergoes no damage, for example
during purely elastic deformation. The use of oC connects
the fragmentation energy consumed during dynamic
expansion with the fracture energy resulting from damage
evolution in the bulk constitutive model.

A common approach involves only post-processing
calculations to determine fragment sizes, with the average
strain rate over the entire history of the problem considered
[35]. In such an approach, the fragmentation energy
does not influence the constitutive response of the bulk
material. On the other hand, here the fragmentation
event influences the bulk response and vice versa through
the exchange of energy, from damage dissipation to
fragment expansion, as discussed following Eq. (28)
and illustrated in Fig. 1. In general, theories such as
[35,48–51] are based on an energy balance or energy
minimization and are consistent with thermodynamic
principles. However, implementation of such models
in a purely post-processing capacity, irrespective of
how the fragmentation energy is supplied or extracted
from the bulk constitutive model, may not, in principle,
properly account for the energy consumed during frag-
Undamaged Damaged

D = 0 0 < D < D
T

crack energy and

               tempera

Fig. 1. Damage evolution an
mentation. It is noted, however, that such energy ex-
changed during fragmentation may be negligible compared
to that induced by plastic dissipation, and that material
elements undergoing significant damage accumulation
tend to support little mechanical strength, so such a non-
physical assumption may present few difficulties in
practical computations.

3.2. Statistical physics approach

Here, the entire fragmenting body is considered at once,
and it remains to be determined how the masses and
velocities are distributed among fragments comprising this
body. The issue is resolved upon consideration of entropy
maximization constrained by mass, momentum, and
energy conservation. In what follows, fragment mass and
velocity distributions are derived individually, then com-
bined to form a joint probability function capturing both
fragment sizes and speeds.
The mass distribution follows from entropy maximiza-

tion subjected to the constraints that the total mass and
total number of fragments are known, following a
procedure outlined by Grady and Kipp [53]. These
constraints are written as

M ¼ r
X

b3
¼ rNb̄

3
, (34)

where it is assumed that the density is the same among all
fragments and the velocity does not affect the mass
distribution, and M and b̄ are known from mass conserva-
tion and a global application of the preceding energetic
analysis, respectively. A measure of the statistical entropy
associated with the mass distribution is SM ¼ kB lnP,
where kB is Boltzmann’s constant and P is the number of
possible fragment arrangements. The value of SM is
maximized by maximizing the quantity [67]

lnP ¼ N lnN �
Xj

i¼0

ni ln ni, (35)

where ni is the number of fragments of mass
mipmomi þ dmi, with dmi describing the range of masses
admitted in each bin i, and with j the total number of bins.
In (35) it is implicitly assumed that ni are large numbers.
Fragmenting

D < D < 1
T

 friction 

ture rise

crack energy release 

               fragment expansion KE

d fragmentation process.
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Constraints (34) are rewritten simply as

N ¼
Xj

i¼0

ni; M ¼
Xj

i¼0

mi. (36)

Introducing Lagrange multipliers a and b, an equivalent
function f ðniÞ is defined as

f ¼ lnPþ a N �
X

ni

� 	
þ b M �

X
mi

� 	
, (37)

which is maximized via the solution of

qf

qni

¼ �ð1þ ln niÞ � a� bmi ¼ 0. (38)

Making the notation change aþ 1! a, (38) yields

ni ¼ expð�a� bmiÞ. (39)

Rewriting (36) as integrals of continuous functions [53],

N ¼

Z 1
0

ndm ¼

Z 1
0

expð�a� bmÞdm

¼ expð�aÞ=b, ð40Þ

M ¼

Z 1
0

mndm ¼

Z 1
0

m expð�a� bmÞdm

¼ expð�aÞ=b2. ð41Þ

Finally, (39) becomes

n̂ðmiÞ ¼ ni ¼ ðN
2=MÞ expð�Nmi=MÞ, (42)

with the cumulative probability distribution of fragments
larger than m given by

n̂ðmÞ=N ¼ N0 expð�N0mÞ, (43)

where N0M ¼ N.
The fragment velocity distribution follows from similar

arguments. A measure of the statistical entropy associated
with the velocity distribution is SV ¼ kB lnW , attaining its
greatest value upon maximization of the function

lnW ¼ N lnN �
Xj

i¼0

ni ln ni, (44)

where ni is the number of fragments with kinetic energy
eipeoei þ dei, with dei spanning the range of energies
admitted in each bin i. The constraints on the distribution
are written as

N ¼
Xj

i¼0

ni; E ¼
Xj

i¼0

ei, (45)

where E is the total kinetic energy of the fragment cloud
that will be determined later. Following an analogous
procedure to that in (37)–(38),

ni ¼ expð�a� beiÞ, (46)

where the Lagrange multipliers a and b are determined as
follows. Making the analogy with rigid molecules [67], let

b ¼ 1=ðkBTÞ ¼ ð3NÞ=ð2EÞ, (47)
where T is a thermodynamic temperature. Then

ni ¼ exp½�a� ð3NeiÞ=ð2EÞ�. (48)

Assume that in ballistic scenarios the fragment velocity is
unidirectional, coaxial with the velocity of the center of
mass of the fragment cloud, such that 2ei ¼ miv

2
i . Then the

probability distribution is

n̂ðviÞ ¼ A exp½ð�3Nmiv
2
i Þ=ð4EÞ�, (49)

where A ¼ expð�aÞ is determined by normalization:

1 ¼

Z 1
0

n̂ðvÞdv ¼ A

Z 1
0

exp½ð�3Nmv2Þ=ð4EÞ�dvi

¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpEÞ=ð3mNÞ

p
, ð50Þ

giving

n̂ðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3mNÞ=ðpEÞ

p
exp½ð�3Nmv2Þ=ð4EÞ�. (51)

The form (51) differs from the velocity distribution
obtained by Grady and Winfree [57], who assumed that the
fragments may scatter randomly in three dimensions,
yielding 3D Maxwell–Boltzmann-type velocity statistics.
In the ballistic concrete perforation experiment that is
described and simulated later, the flying debris tend to
follow a roughly uni-directional path, with fragments
enclosed in a cone angle of less than 451, as opposed to a
path of fully radial expansion.
The joint probability distribution of mass and velocity is

derived by combining (43) and (51):

p̂ðm; vÞ ¼ n̂ðmÞn̂ðvÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3mN5

pEM2

s
exp �m

N

M
þ

3N

4E
v2

� �� �
. ð52Þ

The following relations then arise for total probability,
total fragment mass, mean velocity, and total linear
momentum:Z 1
0

Z 1
0

p̂ðm; vÞdmdv ¼ 1, (53)

Z 1
0

Z 1
0

p̂ðm; vÞmdmdv

¼

Z 1
0

mn̂ðmÞ

Z 1
0

n̂ðvÞdv

� �
dm ¼M, ð54Þ

1

N

Z 1
0

Z 1
0

p̂ðm; vÞvdmdv

¼
1

N

Z 1
0

n̂ mð Þ

Z 1
0

n̂ðvÞvdv

� �
dm ¼

ffiffiffiffiffiffiffiffi
4E

3M

r
, ð55Þ

Z 1
0

Z 1
0

p̂ðm; vÞmvdmdv

¼

Z 1
0

mn̂ mð Þ

Z 1
0

n̂ðvÞvdv

� �
dm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EM=3

p
. ð56Þ

Identifying (56) with the linear momentum of the fragment
distribution, conservation of linear momentum demands
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that the energy distributed to feed the velocity probability
distribution is

E ¼ 3rb̄
3
Nv̄2. (57)

The mean velocity in (55) then becomes 2v̄, i.e., twice the
velocity of the center of mass of the fragmenting body. The
expansion energy of (28) does not contribute to the velocity
distribution because this energy is consumed by the strain
rate of the fragments as given by Eq. (30), as opposed to
their linear velocities.

The method presented above, based on global entropy
maximization, is offered as an alternative to the local
energy balance method derived in Section 3.1. The second
method provides a basis for comparison of numerical
results in the absence of quantitative data on fragment
velocities, which are scarce for materials of present interest.
The differences between the two approaches are as follows.
For the approach in Section 3.1, a local energy balance
leads to a local fragment dimension. In the numerical
implementation to be discussed later in Section 4, each
particle is then assigned its own number of fragments, with
the size of these based on the local strain rate history and
damage evolution in that particle (or corresponding
element). Consideration of all particles then provides
statistical distributions of fragment mass and velocity,
with velocities of fragments obtained directly from parent
particles. In contrast, in the statistical method of the
present section, distributions of fragment sizes and
velocities are found using (52), irrespective of the local
particles’ velocities and the masses associated with each;
only the total fragment mass and kinetic energy are needed
(these are supplied by the computation). In this way,
distributional information is provided by the universal
entropy maximization procedure in lieu of the local physics
from the constitutive update and particle algorithms. This
tends to make the statistics-based method less sensitive to
the meshes used in the computations, as will be demon-
strated in Section 5.1, though the sensitivity of the former
energetic approach to mesh density is not excessive here.
Both methods are motivated by and address principles of
mass, energy, and momentum conservation. The new
contribution in the present section is derivation of the
joint mass–velocity distribution (52) in the context of 1D
fragment trajectories, and derivation of Eq. (57), the energy
fueling the fragment velocities, neither of which was given
explicitly in [57].

It is noted that geometry-based fragmentation theories,
such as discussed in [52,53], are often not developed via
direct thermodynamic considerations. However, this does
not mean such models contradict thermodynamic princi-
ples, and in fact, many have been analyzed and justified
using entropy methods from statistical mechanics [54–57].
So long as the energy consumed during damage and
fragmentation is tracked correctly in the constitutive
model, it is thought here that such approaches are
reasonable from a thermodynamic perspective. In the
problems considered later in Section 5, calculations
accessing the constitutive model are needed to supply
global data—specifically the collective mass, number, and
linear momentum—entering the statistical theory to
produce the distributions of mass and velocity, which in
turn satisfy global conservation laws via (53)–(57). Though
unlikely, if such data are known a priori from experimental
or analytical means, then the constitutive model and
numerical simulations will not be needed for predicting
fragmentation statistics with a single equation such as (52)
or those in [52,53].

4. Concrete material modeling

The model was applied here to study a particular
concrete material. Properties, parameter selection, and
numerical implementation are described briefly in what
follows.

4.1. Material properties and parameters

The preceding theory was applied to describe a concrete
of unconfined compressive strength 48MPa (7 ksi), as
studied previously by Hanchak et al. [6] and Holmquist et
al. [7]. Parameters are listed in Table 1.
Constants marked with a superscript were obtained from

[7]; most of these enter the yield function (20). Note that
our framework is general in the sense that an alternative—
and possibly more robust for certain complex load
histories—plastic potential for deviatoric flow could be
substituted for F and the HJC plasticity parameters
entering Eq. (20) while still maintaining thermodynamic
admissibility of the kinetic relations. Also, identical
constants were often found to adequately address behavior
for which elastic strains were small, such that differences in
pressures ~p and p in intermediate and spatial frames,
respectively, were negligible.
The fully crushed material is assumed to behave similarly

to the aggregate at high pressures, following [7]. For this
concrete, the aggregate is assumed to consist of fine- and
coarse-grained granite stones [6]. Constants K1, K2, and
K3, describing the volumetric elastic response of the fully
crushed material, were determined by fitting the pressur-
e–volume response of (18) to the shock Hugoniot data
for granite [64], assuming purely volumetric elastic
deformation of the form FE ¼ ð1� wÞ1. The fit, shown in
Fig. 2, is deemed accurate for pressures up to 20GPa.
Porosity evolution parameter â was found from linear
interpolation between crushing and locking pressures, i.e.,
â ¼ jLs0=ðpL � pCÞ. The pressure–volume response under
triaxial loading at pressures under 20GPa is shown in
Fig. 3 and compared with experimental data [6]. Here, m ¼
r=r0 � 1 is the total volumetric strain. The complete
pressure–volume response and porosity change under
triaxial compression are given in Fig. 4; notice the abrupt
increase in effective bulk modulus upon attainment of the
locking pressure, at which j ¼ jL. Thermodynamic
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admissibility of porosity evolution, from inequality (27),
was verified for all _j40, as shown in Fig. 5.

Fracture toughness KC was obtained from [67] and was
assumed constant. However, it is noted that variability in
fracture strength is expected depending upon loading rate,
stress state, specimen size, and composition [68]. Following
monotonic and cyclic slow-rate test data and analyses given
in [6,7,63], failure occurs ðD ¼ 1Þ when the cumulative
plastic strain l ¼ 0:0033 under null pressure conditions
p=s0 ¼ 0, giving k̂ ¼ 300. Consulting the above references,
prescribing D ¼ 1 when l ¼ 0:01 under average pressure
p=s0 ¼ 1

6
yields pD ¼ 4.

The computed stress–strain responses for the concrete
material deformed in uniaxial compression, tension, and
shear are shown in Fig. 6. Results were obtained from
deformation of a single dynamic finite element under
conditions where imposed components of the deformation
gradient F and nominal strain � were related as follows: for
compression F 11 ¼ 1� �, tension F11 ¼ 1þ �, and shear
F12 ¼ �. The axial stress is plotted for tension/compression
and the shear stress for shear deformation. Note that the
material hardens slightly with strain rate, particularly in
compression, in agreement with recent experiments [11].
The rate effect is less noticeable in pure shear, as the curves
for rates _� of 1/s and 10/s are nearly superposed. Softening
and complete stress relaxation occur under tensile and
shear loading due to damage accumulation. Slight oscilla-
tions occur in the tension and compression stress–strain
curves due to lateral stress relief waves from the Poisson
effect and the dynamic integration scheme.
Maximum crack density oC and threshold damage

parameter DT were chosen based on observations from
ballistic experiments on the material of interest [58]. In
experiments, the typical fragment size was observed to be
on the order of the minimum dimension of the coarse
aggregate of the concrete microstructure, here 9.5mm.
For cubic fragments, this implies an edge length b̄ of
9:5=

ffiffiffi
3
p

mm, as the aggregate stones were sized in practice
via passage through a sieve with holes of diameter 9.5mm.
A typical strain rate observed over the duration of the
fragmentation event was _� ¼ 2ð10Þ4=s, based on examina-
tion of results from simulations reported later in
Section 5.1. Invoking (32), and assuming that fragmenta-
tion begins when the material has lost half of its strength,
i.e., DT ¼ 0:5, then produces the value of oC listed in
Table 1. More quantitative experiments on damage evolu-
tion and fragmentation are needed to support independent
choices of oC and DT; however, for the present scenarios of
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interest, the choice of parameters insignificantly affects the
model predictions apart from the mean fragment dimen-
sion. Others have suggested a correlation between grain or
aggregate size and typical or minimum fragment dimension
in granular geological materials [69].

4.2. Numerical implementation

The material model was inserted into the 2003 version of
the EPIC Lagrangian finite element code [47,62]. The
equations of motion and constitutive response are inte-
grated explicitly, and GPA and contact algorithms are
available for addressing multi-body interactions.

The stress rate is derived by differentiating (17) and
assuming small elastic stretch, giving

_̂r ¼ 2Gð1�DÞD̂
E
þWEr̂� r̂WE � _Dr̂=ð1�DÞ, (58)

where D̂
E
is the symmetric, deviatoric part of LE and WE is

the skew part of LE. The assumption of small elastic strains
is standard in metal plasticity literature [33], has been
widely used for concrete modeling [12], and enables
efficient integration of the deviatoric stress state via a
radial return algorithm. The assumption is thought to be
justified here for concrete deforming in shear or tension in
that yielding and failure of the material should occur prior
to the attainment of large deviatoric stresses (and
correspondingly large deviatoric elastic strains), from
evolving inelastic deformation (20) and damage D in (21).

Under realistic cases where elastic volume changes are
large, e.g., triaxial compression, the hydrostatic pressure is
of primary interest. At large pressures, the hydrostatic
response is integrated in terms of the modified total
volumetric strain m̄, following [7]:

m̄ ¼ ðm� jLÞ=ð1þ jLÞ. (59)

At pressures beneath the locking pressure, elastic strains
are small, and a relationship equivalent to (18) is used. On
the other hand, a direct cubic fit to the Hugoniot data of
[64] is invoked, via p ¼ K1m̄þ K̂2m̄2 þ K3m̄3, at high
pressures and large elastic compressive strains, after all
porosity is compacted. In this way, possible errors due to
linearization of elastic strain propagated from (58) are
avoided in the high pressure–volume response. Note from
Table 1 that K̂2 differs from K2 by 20GPa due to the
choices of volumetric strain measures used at low (5) and
high (59) pressures.
The energy balance (13) is exercised, along with

thermodynamic expressions (23) and (26), to update the
temperature of the material. To this end, the elastic strain
quantities of (5), and hence the elastic deformation
gradient FE, are needed. The latter is computed via an
exponential update standard in the context of computa-
tional crystal plasticity [24,70]. The following approxima-
tions are used here:

FE
tþDt ¼ expðLEDtÞFE

t ,

expðLEDtÞ ¼ 1þ
sinO
O

LEDtþ
1� cosO

O2
ðDtÞ2ðLEÞ

2, ð60Þ

where Dt is the time increment of integration, LE

is assumed constant over the time increment, and

O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2ÞLE: LE

q
Dt. In the present application of (60),

LE is computed by subtracting the plastic deformation rate
from the total velocity gradient, thereby including all rigid
body rotations in the elastic part of the deformation. One
can show that the form of (60)2 is exact when LE is skew,
and otherwise introduces numerical error of order ðDtÞ3

that is negligible in the context of dynamic calculations of
the sort here, for which Dt is very small. Also, since the
elastic stretch generally remains small in the large scale
computations that follow in Section 5, in these computa-
tions LE consists predominantly of rotation and is nearly
skew.
The following methodology for addressing failure of the

material is used. When an integration point achieves a
critical value of damage, i.e. when D ¼ 1, failure occurs.
Failed material supports no deviator stresses or tensile
pressures. In practice, when D40:95 in the numerical
integration, D is subsequently set to unity and the material
fails in the next integration cycle, in order to avoid
difficulties with (58) as D approaches unity. Additionally,
finite elements are converted into particle nodes when a
scalar measure of effective inelastic or volumetric strain,
termed the erosion strain, is attained [47,62], in order to
alleviate numerical inaccuracies associated with highly
distorted elements. In the calculations that follow, the
erosion strain is chosen as 0.5, following recommendations
in [62]. For the present material model, failure may or may
not necessarily precede erosion, but eroded elements are
almost always failed, as D in (20) typically attains a value
of unity prior to accumulation of sufficient strain needed to
trigger particle conversion.
Two methods have been developed for addressing

fragment mass and velocity distributions. For the approach
of Section 3.1, a typical fragment dimension is computed
for each converted particle using Eq. (32), where the
strain rate _� during the fragmentation event is time-
averaged only over explicit integration cycles for which
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D4DT. The number of fragments associated with a given
particle is then found by dividing the particle’s mass by the
mass of its associated fragment. Each fragment is assigned
the velocity of its parent particle. For the statistical
approach of Section 3.2, the total mass and mass-weighted
velocity of the particle cloud (see later Eq. (62)) are
extracted from the simulation output. The total number of
fragments follows from assumption of a nominal fragment
dimension corresponding to the aggregate size as discussed
above. Then upon application of (57), all quantities in
distribution (52) are known, and the velocity and mass
probability distributions are computed in a post-processing
step.

The presentation here has emphasized the general
theory, with more restrictive assumptions that narrow the
focus of the model to a particular concrete material
introduced only as they become necessary. This enables
avenues for extending the framework to related materials
in the future, and also permits description of the limitations
of the specific material model and its numerical imple-
mentation. Note that while the nonlinear elastic theory was
implemented numerically for hydrostatic deformations in
order to select bulk elastic constants (Figs. 2 and 3) and
judge the thermodynamic admissibility of porosity evolu-
tion (Fig. 5), some simplifications have been enacted to
enable solution of large scale problems encompassing
Table 2

Steps used in constitutive update for large scale computations

Step Equation(s)

Read in constants, internal variables, and

rate variables

–

Compute effective shear modulus G! Gð1�DÞ

Compute effective flow stress (20)

Compute deviatoric Cauchy stress r̂ ¼ r� ðtrr=3Þ1
Update stress using radial return

algorithm

(58)

Update inelastic deformation rates (2), with

2LD ¼ _F
D
FD�1 þ FD�T _F

DT

Update plastic work (25)

If j ¼ jL, compute effective bulk

modulus and pressure

(15), (18)

If j ¼ jL, compute effective volume

change and pressure

(59), with

p ¼ K1m̄þ K̂2m̄2 þ K3m̄3

Update elastic deformation gradient (60)

Compute elastic volume change and

elastic strain deviator
(5), Ê

E
¼ EE � ðWE=3Þ1

Update porosity and damage (21)

Add dissipation from rates of porosity

and damage

(23), (26)

Update internal energy (13)

If D4DT, update cumulative strain during

fragmentation
�tþDt ¼ �t þ Dt

ffiffiffiffiffiffiffiffiffiffiffiffi
D : D
p

If D4DT, update rate over fragmentation

time span, t�tF

_� ¼ �tþDt= tþ Dt� tFð Þ

If D4DT, compute fragment size and

number of fragments
(32), N ¼M= rb̄

3
� 	

If D ¼ 1, zero deviator stresses and tensile

pressure

r̂! 0; p 2 po0ð Þ ! 0
hundreds of thousands of elements and particles. Specifi-
cally, these include Eqs. (58), (59), and the failure
algorithm discussed above. Table 2 lists the general scheme
and corresponding equations used for the constitutive
update in the large scale calculations presented in Section
5. These steps in the computation are bypassed, for the
most part, once local failure of the material has occurred.
In Table 2, t ¼ tF denotes the time instant in the solution at
which fragmentation commences, when the damage D

attains or surpasses a threshold value of DT. It is also noted
that all numerical implementations rely on some approx-
imation of the governing differential equations, e.g.,
discretization in space and time, and the present computa-
tions, in the context of coupled finite elements and meshless
particles, are of course subject to such universal limitations.

5. Numerical simulations

Two problems were used to demonstrate the capabilities
of the concrete material model. The first involved perfora-
tion of a concrete target by a spherical metallic projectile;
the second involved fragmentation of a spherical concrete
projectile upon impact with a metallic plate.

5.1. Concrete perforation

A specific initial-boundary value problem was solved to
mimic a ballistic perforation experiment conducted at the
US Army Research Laboratory (ARL) [58]. In the
experiment, a small tungsten sphere was fired at concrete
wall. The sphere, of diameter 7.94mm, was formed from an
alloy of mass density 18 690 kg/m3. The concrete target was
SAC-7 composition [6], with no reinforcing bars, 25.4mm
thick. High-speed photography was used to record the
striking velocity of the projectile, measure the residual
velocity of the penetrator, and collect images of the
fragment debris cloud. Post-mortem measurements of hole
and crater dimensions were obtained via visual inspection.
The initial problem geometry is shown in Fig. 7.

The concrete target’s dimensions were 25:4 mm�
102 mm� 102 mm, with half modeled explicitly as a result
of symmetry. Two meshes were used to evaluate effects of
mesh density: a coarse grid with 102 144 composite
tetrahedral elements [62] and a fine grid with 244 512
elements. The mesh density in the target was reduced
gradually with increasing distance from the location of
impact. The impact velocity of the sphere was 1120m/s.
Frictionless contact between projectile and target was
assumed. Adiabatic conditions were invoked, with a
uniform initial temperature of 294K.
The constitutive model used for the concrete, as

developed in Sections 2–4, is the focus of this work and
was used to model the target. On the other hand, a simple
yet efficient and widely used constitutive model was chosen
for modeling the behavior of the projectile. Specifically, the
alloy of the sphere was modeled using the constitutive
theory of Johnson and Cook [9] for the deviatoric
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Fig. 7. Ballistic initial-boundary value problem: (a) coarse mesh, 102 144 elements, and (b) fine mesh, 244 512 elements.

Table 3

Experimental and numerical results, ballistic impact and fragmentation

Experiment Simulation,

coarse

Simulation,

fine

Penetrator VR (m/s) 854 814 825

Hole diameter (mm) 21 25 26

Crater diameter (mm) 55 52 50

Mass loss ML (kg) 0.1 0.134 0.123

Eroded mass M (kg) — 0.014 0.014

Avg. frag. velocity v̄ (m/s) — 133 116

J.D. Clayton / International Journal of Impact Engineering 35 (2008) 269–289 283
mechanical response, with a Mie–Gruneisen equation of
state for the hydrostatic response [62]. As the tungsten
sphere did not fracture or degrade significantly during the
experiment, failure of the tungsten was suppressed in the
simulations. Properties were those for a tungsten alloy
from the EPIC library [9,62], apart from the mass density,
which was set to exactly match that of the experimental
specimen. It is noted that the constitutive updates of the
material responses tended to require little execution time
relative to particle search algorithms as the solutions
proceeded and numerous finite elements were converted to
meshless particles.

Results from experiment and simulations are compared
in Table 3. The magnitude of the residual velocity of the
spherical projectile, VR, agreed within 5% between
simulations and experiment, with a difference of less than
1.5% between simulations with fine and coarse grids. Hole
and crater diameters corresponded to the exit side of the
target. The hole diameter was estimated experimentally and
in the simulations as the visible diameter of perforation.
The crater diameter was measured experimentally as is
clear from visual inspection of Fig. 8(a). The simulated
crater diameter was estimated as that part of the target
surrounding the perforation where the material was fully or
nearly fully damaged, i.e., where D � 1. This region is
shown by darkened grayscale values in Fig. 8(b). Con-
verted particles are deliberately not shown in Fig. 8(b). It is
suggested here that such fully damaged material, as it
supports no tensile or deviatoric stresses, would simply fall
off the target after the impact event due to the force of
gravity, leaving behind a crater in the concrete. The total
mass lost in the experiment was determined by weighing
the target before and after the test and subtracting the post-
test weight from the initial weight. The mass loss in the
simulation was computed via

ML ¼

Z
rDdV , (61)

where the domain of integration is the volume of target
material, and damaged material was considered to
contribute to mass loss following the above arguments.
The eroded mass M reported in the simulations was simply
the summed mass of all particle nodes, while the average
velocity magnitude of the fragment cloud was computed by

v̄ ¼M�1
X

k

mkvk, (62)

where the velocity vk of each particle k was weighed by that
particle’s mass mk. Numerical results in Table 3 correspond
to the solution time t ¼ 150 ms, as values of these quantities
(e.g., average projectile and fragment velocities and
dimensions derived from damage contours) did not change
significantly at increments beyond this instant of time in
the calculations.
Photographs from the ballistic experiment are shown in

Fig. 9. The projectile is exiting the target and traveling
from left to right in this series of frames. Initially, some
fragment debris is propelled ahead of the projectile
(Fig. 9(a)), but as the fragmentation event proceeds,
the projectile passes through much of the debris cloud
(Figs. 9(b) and (c)). The fragment cloud appears close to
co-linear with the path of the projectile, in agreement
with prior assumptions in the statistical model, though
there is some spread (i.e., non-zero cone angle). The fastest
moving particles appear small, powder-like, and are
thought to consist mainly of pulverized mortar. Larger,
slower-moving particles remain closer to the target in the
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Fig. 8. Post-event crater: (a) experiment [58] and (b) simulation. Darkened areas in grid (b) denote damage state variable D.

Fig. 9. Fragmentation event: high-speed photos from ballistic experiment [58].
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Fig. 9(c), and are thought to consist mainly of aggregate
chunks. Photographs of the ballistic event were not
available on the entrance side of the target, though
substantial debris was observed there post-test.

Results from a simulation are visualized in Fig. 10, at
t ¼ 150 ms, corresponding to the experimental image in Fig.
9(c). The simulation with the coarse mesh is depicted;
corresponding results for the fine mesh were visually very
similar. Concrete particles are scaled in the figure by the
nominal fragment diameter b̄, as computed from the
energetic theory, Eq. (32). Particles are colored by velocity
magnitude. As observed in the experiment, the penetrator’s
exit velocity exceeds that of most of the concrete fragments.
Larger fragments are slower-moving and remain close to
the target, while fast moving fragments are relatively
smaller in size. Note that the effects of aerodynamic
resistance, which presumably could impart drag on small
particles with large surface area to volume ratios, are not
included in the simulations. Such effects would presumably
reduce the speed of very fast moving particles that exceed
the projectile’s velocity in the simulation. Contours of
damage D are shown in the concrete target. A few particles
that appear stray in Fig. 10 were in fact ejected from the
sides of the target where damage propagated to the edges.
The most fully damaged material logically surrounds the
perforation, though the damage pattern is not purely axi-
symmetric due to the non-symmetric construction of the
mesh and the rectangular geometry of the target.
Mass probability distributions for the fragment cloud
are shown in Fig. 11(a). The distributions were computed
in two different ways: the energetic theory of Section 3.1
and the statistical physics-based theory of Section 3.2. For
the energetic theory, the mass of all fragments comprising a
particle k was computed from (32) as

mk ¼
K2

CoCðD�DTÞ

8KEr1=3_�2

� �3=2
k

. (63)

Subsequently, distributions were generated by grouping
fragments into bins organized by mass:

p̄ðm1omom2Þ ¼M�1
X

j

mj, (64)

where j spans all fragments with masses in the range
m1omom2. For the statistical theory, corresponding
probability distributions were found from (52) as

p̄ðm1omom2Þ ¼
1

M

Z m2

m1

Z 1
0

mp̂ðm; vÞdvdm

¼ �
m

M
þ

1

N

� �
exp

�N

M
m

� �



m2

m1

, ð65Þ

where the total mass M is listed in Table 3. The results of
Fig. 11(a) may be interpreted as follows. As predicted by
the energetic theory using numerical results from the
coarse grid, for example, fragments having masses between
0.0001 and 0.001 kg constitute 48% of the total mass of the
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Fig. 10. Fragmentation event: simulation at 150ms. Particle diameter scaled by fragment dimension and particles colored by velocity magnitude.

Penetrator elements colored by velocity magnitude. Concrete target elements colored by damage variable D.
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Fig. 11. Predicted fragment: (a) mass and (b) velocity distributions at 150ms.
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fragment cloud. Slight differences in mass probabilities
among simulations with coarse and fine grids are evident in
the energetic theory, on the order of a few percent at most
for any particular bin. However, since an identical value of
M was computed in both simulations, the statistical theory
yielded identical results for coarse and fine discretizations.
Note that for all four cases (i.e., two theories and two grid
sizes), the bin containing the largest mass fraction of
fragments was that for which fragments spanned the range
of 0:0001 kgomo0:001 kg.
Velocity probability distributions of the fragment debris
are shown in Fig. 11(b). These are mass-weighted distribu-
tions. For the energetic theory, the probability was
computed by

p̄ðv1ovov2Þ ¼M�1
X

k

mk, (66)

where the index k here identifies a particle whose velocity is
within the range v1ovov2, with mass of that particle
denoted by mk. For the statistical physics theory, individual
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particle velocities were not considered directly. Instead the
global center of mass velocity v̄ of Eq. (62) and Table 3 was
substituted into (57) to compute the kinetic energy
distributed among the fragments. The probability was then
estimated from Eq. (52) as

p̄ðv1ovov2Þ ¼ N�1
Z v2

v1

Z 1
0

p̂ðm; vÞdmdv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3NÞ=ð4EÞ

p
� ½v=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN=MÞ þ ð3Nv2Þ=ð4EÞ

q
�jv2v1

. ð67Þ

Fig. 11(b) shows the predicted mass fraction of fragments
within a particular velocity range. For example, from the
energetic theory with a coarse mesh, 47% of the mass of the
cloud should exhibit a velocity magnitude in the range
0–100m/s, and 34% in the range of 100–200m/s. Slight
differences between velocity v̄ for simulations with coarse
and fine meshes led to differences in their statistical physics-
based predictions, for example on the order of a 4% for the
computed value of p̄ for the mass fraction of fragments with
vo100 m=s. Predictions from the energetic theory differed
slightly more with mesh density, on order of 8%, for
example, for the mass fraction of fragments with
vo100 m=s. Note that for all four cases, the bin of range
0ovo100 m=s was predicted to contain the largest mass
fraction of fragments.

5.2. Dynamic impact crushing

Because quantitative data on fragment mass distribu-
tions were not available from the experiment [58] simulated
above, a second simulation was performed to further judge
the accuracy and limitations of aspects of the present
model. The experiment was conducted elsewhere, as
described in [3], in an investigation of methods for reducing
concrete rubble to recyclable form via impact crushing. In
the experiment [3], a concrete sphere was propelled at
moderate velocity into a target plate within a cylindrical
catch tank; upon impact of the sphere with the plate, the
concrete fractured and fragmented into debris that were
collected from the tank. Multiple passes through the
apparatus were used to further reduce the rubble. Here,
only the first pass is simulated, and the interactions
between concrete projectile and metallic tank are limited
to the initial impact of the sphere with a flat plate.
Subsequent interactions that would presumably occur in
the experiment, such as impact of the fragments with the
sides of the tank upon ricochet, are not modeled here.

The same modeling procedures developed in Sections
2–4 were used here. Elastic, plastic, and damage evolution
relationships and properties for SAC-7 concrete [6] were
employed in the simulation, as experimental data on the
strength of the concrete tested in [3] were not reported. For
this reason, discrepancies may naturally emerge between
results of simulation and experiment. Specifically, it is
noted that the compositions appear different in [3] and [6],
with different types of aggregate and mortar. In order to
predict the fragment mass distributions, only the method
predicated upon a local energy balance (Section 3.1) was
used here. Since the fragment clouds are far from 1D (52)
or spherical [57], analytical statistical physics-based the-
ories of the sort derived in Section 3.2 do not immediately
apply.
The problem consisted of a spherical concrete projectile

of diameter 150mm impacted against a steel wall of
dimensions 100 mm� 750 mm� 750 mm at a normal
velocity of 55m/s. Two meshes of increasingly fine
discretizaton were used. The coarse mesh consisted of
34 272 elements, while the fine mesh included 81 408
elements. As in the previous problem of Section 5.1, all
elements were composite tetrahedral [53], and mesh
densities in the target were reduced gradually with
increasing distance from the location of impact. Friction-
less contact between projectile and target was assumed, and
adiabatic conditions were invoked, with a uniform initial
temperature of 294K. The target plate was assumed to
consist of 4340 steel, addressed here with standard
Johnson–Cook plasticity [9] and fracture [10] models and
properties from the EPIC material library. The coarse
mesh is shown in Fig. 12(a).
The deformed coarse mesh, with converted particles, is

shown in Fig. 12(b), at t ¼ 5 ms after impact. Fragment
mass distributions remained nearly static at later solution
times. Particle diameters are scaled by their corresponding
fragment size b̄ in Fig. 12(b). Note that each visually
smaller particle in fact often represents a cloud of many
small particles, since the nodal mass of each particle is
distributed among the multiple fragments corresponding to
that particle. From Fig. 12(b) a mixed distribution of
fragment sizes is apparent. The concrete debris consists of
small faster-moving fragments on the periphery, large
generally slower-moving fragments near the center of the
target plate, and several intact pieces of the projectile. The
latter are finite elements that did not fail or convert to
particles in the simulation.
Predicted fragment mass distributions, computed from

Eq. (64), are compared with those obtained from the
experiment [3] in Fig. 13. Bins used to group the fragments
here are the same used in [3], where fragment diameters
from [3] have been converted to masses in Fig. 13 via the
mass density of SAC-7 concrete listed in Table 1,
r0 ¼ 2440 kg=m3. From Fig. 13, the model appears to
predict the fragment mass distributions with reasonable
accuracy. The relatively large concentration p̄ � 0:4 of
larger fragments in the range of 0:02 kgomo1:3 kg results
mainly from the unconverted finite elements of the concrete
sphere (perhaps damaged but not failed). These pieces were
included in the fragment count, since in the experiment the
entire specimen was apparently sieved during fragment
collection from the catch tank. The relatively large
concentration p̄ � 0:35 in the intermediate range of
0:00004 kgomo0:0025 kg emerges from the balance of
fracture energy and kinetic energy fueling the local
fragmentation process in (32); i.e., most of the converted
particles fall into this bin. The fraction of smaller
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fragments, mo5:2ð10Þ�6 kg, is vastly under-predicted by
the theory. This is because local strain rates achieved
during integration cycles over which D4DT were of
insufficient magnitude to generate very small fragments
via (32). This effect highlights the limitation of the present
modeling approach: only dynamic high-rate fragmentation
problems can be simulated, as the local kinetic energy of
the material, balanced by the energy dissipated by micro-
cracking, provides the sole impetus for break up into
numerous fragments. It is noted that very small fragments
could feasibly be generated in the experiments by interac-
tions with the walls of the catch tank upon ricochet and
settling, effects not modeled here. It is also noted that
explicit radial crack patterns reported from high-speed
photographs in [3] cannot be reproduced by the present
framework based on continuum damage mechanics. Some
mesh dependence is evident, but not excessive, in Fig. 13:
differences among predictions of p̄ðmÞ obtained from fine
and coarse meshes of no more than 6% are apparent in
any bin.
Fragment velocity data were not available from the

experimental description [3]; hence such data, though
available from the computation, are not presented here.
Experimental velocity data appear scarce for dynamic
fragmentation of pure (not reinforced) concrete of interest
here. However, some experimental data are available for
colliding rocks [57,71] and bar-reinforced concrete walls
undergoing explosive loading [2].
6. Conclusions

A constitutive theory for deforming and fragmenting
crushable solids has been developed. The theory includes
the following novel combination of features: finite defor-
mation kinematics of elasticity, plasticity, and inelastic
compression; an energy density function with contributions
from nonlinear elasticity, damage, and porosity; and
kinetic relations for evolution of inelastic deformation,
pore compression, and damage satisfying both the
energy balance and entropy inequality. The theory also
features two alternative, physically motivated methods to
compute fragment size and velocity distributions. In the
energetic method, a local balance between expansion
kinetic energy and fracture energy associated with damage
evolution leads to a local fragment size. In the statistical
method, global entropy maximization leads to a joint
mass–velocity distribution function. The theory has been
implemented in a Lagrangian FE setting with GPA,
whereby highly distorted elements are converted to
interacting particle nodes. In the implementation of the
plasticity theory, small elastic strain assumptions are used,
though the hydrostatic response, computed separately, is
considered valid to large pressures. Local/global solution
data from converted GPA nodes are used to compute
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fragment size and velocity distributions for the energetic/
statistical methods, respectively.

The model was first used to study the impact of a small
tungsten sphere into a thin concrete target. Residual
projectile velocities, hole and crater dimensions, and target
mass loss were comparable between experiment and two
simulations of different mesh density. Attributes of the
fragment debris clouds agreed qualitatively among simula-
tions and experiment, with the fastest particles usually
being smallest in size. Distributions of mass and velocity
were computed using the two thermodynamically moti-
vated methods (energetic and statistical), and two grid
spacings (coarse and fine). Mass-weighted distributions
were qualitatively similar among all cases, with the bin
corresponding to the largest fraction of fragments having a
particular mass or velocity range the same regardless of
method or mesh size. Predictions of mass distribution were
fairly mesh-independent, with velocity slightly more so
(e.g., maximum velocity probability differences on the
order of 8% for a 140% increase in number of elements). It
remains to be seen which fragmentation theory most
closely replicates live ballistic perforation experiments as
experimental mass and velocity distribution data become
more available.

In a second simulation, the energetic method was used to
predict fragment mass distributions upon impact crushing
of a concrete sphere. Following quantitative comparison
with experimental data, the theory predicted mass dis-
tributions of larger fragments with reasonable success,
despite uncertainty in the strength properties of the
concrete tested in the experiment. However, the model
failed to capture very small fragment debris produced in
the experiment, as sufficiently high deformation rates
needed to yield very small fragments were not attained in
the simulation. This artifact of the model illustrates that
modifications to the present framework are needed to
properly address failure and fragmentation under quasi-
static and low-strain-rate loading conditions.
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[13] Bažant ZP, Caner FC, Carol I, Adley MD, Akers SA. Microplane

model M4 for concrete. I. formulation with work-conjugate

deviatoric stress. ASCE J Eng Mech 2000;126:944–53.

[14] Asaro RJ. Crystal plasticity. ASME J Appl Mech 1983;50:921–34.
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